Scaling laws of nonlinear silicon nanophotonics
نویسندگان
چکیده
Scaling properties of two photon absorption, free carrier scattering, Raman scattering and Kerr effect in silicon waveguides is reported. It is shown that the dependence of minority carrier lifetime on waveguide dimensions has a profound impact on the performance of nonlinear optical devices built using silicon waveguides.
منابع مشابه
Fundamental Scaling Laws in Nanophotonics
The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of "smaller-is-better" has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scali...
متن کاملSilicon Nanophotonics for On-Chip High-Speed Parametric Optical Processing
Utilizing all-optical parametric processing in a silicon photonic chip, we demonstrate wavelength conversion for 10 and 40-Gb/s NRZ as well as 160-Gb/s pulsed-RZ data signals, and demonstrate eight-way wavelength multicasting at 40-Gb/s NRZ data rates. ©2009 Optical Society of America OCIS codes: (130.7405) Wavelength conversion devices; (190.4380) Nonlinear optics, four-wave mixing
متن کاملSunlight-thin nanophotonic monocrystalline silicon solar cells
Introducing nanophotonics into photovoltaics sets the path for scaling down the surface texture of crystalline-silicon solar cells from themicroto the nanoscale, allowing to further boost the photon absorptionwhile reducing siliconmaterial loss. However, keeping excellent electrical performance has proven to be very challenging, as the absorber is damaged by the nanotexturing and the sensitivit...
متن کاملGuest Editors’ Introduction: Silicon Nanophotonics for Future Multicore Architectures
h IT IS OUR pleasure to introduce this Special Issue on Silicon Nanophotonics for Future Multicore Architectures. The need for high-performance and energy-efficient communication between processing cores has never been more critical. The increase in core counts in emerging chip multiprocessors (CMPs) has put more pressure on the communication fabric to support many more streams of high bandwidt...
متن کاملAdvanced Interconnect Technologies for Future ULSI Applications
Scaling trends and limitations of existing interconnect technologies are discussed and two prospective future solutions carbon nanotube (CNT) and optical interconnects are examined in detail. The inherent unscalability of metal interconnects and degradation of their performance in the light of ever-increasing transistor density and performance is emphasized. Problems with multi-layer low-k/copp...
متن کامل